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The first order thermal diffuse scattering contribution to integrated Bragg scattering intensities for 
monatomic, crystalline lattices has been analytically evaluated. Parallel arguments for evaluation of 
the integrated Bragg intensity and the integrated thermal diffuse scattering intensity are developed for 
a general diffractometer intensity scan. The resulting general expressions are reduced to a simplified 
form for several situations. In particular, the two standard integrated intensity scans, an m-scan and an 
og/20-scan, are considered. Comparison is made between the results of this calculation and previously 
published calculations, as well as with recently published experimental measurements of thermal 
diffuse scattering effects. The variation of the thermal diffuse scattering contributions to the measured 
intensity is discussed through consideration of a dimensionless parameter, which is indel:endent of 
both temperature and the diffracting material. This parameter depends only cn the experimental 
constants relating to the intensity measurement and is examined as a function of the detection window 
size, the scan width and tyIre, and the diffraction angle. It is fcund, for the situations considered, that 
the ratio of the thermal diffuse scattering to the Bragg scattering tends to show a pronounced maximum 
in the intermediate-high angle region (60 ° < 0 < 80 °). 

Introduction 

Scattered X-radiation from a crystalline lattice can be 
analytically decomposed into two major types: Bragg 
scattering, and thermal diffuse scattering (T.D.S.). The 
Bragg scattering owes its origin to the periodicity of the 
crystalline lattice while the T.D.S. arises from an inter- 
action between the incident X-radiation and the ther- 
mal lattice waves of the crystal. As the temperature of 
the crystal approaches absolute zero, the Bragg scat- 
tering approaches a maximum, whereas the T.D.S. 
tends to vanish. Furthermore, as the scattering vector 
approaches a reciprocal lattice point corresponding to 
an allowed reflection, both the Bragg scattering and the 
T.D.S. will approach maxima, although the former 
will be much sharper. Because these two effects are 
maximized simultaneously, it is difficult to separate 
the Bragg scattering and the T.D.S. experimentally; 
this separation is therefore usually performed analyti- 
cally. 

The basic theory involved in calculating T.D.S. 
effects was originally developed by Waller (1925, 1928). 
Warren (1953) and Chipman & Paskin (1959) have 
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developed techniques for correction of the T.D.S. for 
crystalline powders. Nicklow & Young (1964) have car- 
ried out a rather extensive calculation of the T.D.S. 
contribution for peak intensity measurements, utilizing 
a weighting function to describe the net T.D.S. contri- 
bution from each point in reciprocal space. 

Nilsson (1957) carried out one of the first calcula- 
tions of the T.D.S. effect for integrated, single-crystal, 
diffractometer intensity measurements. Expanding on 
Waller's original work, Nilsson developed a method of 
evaluating the integrated first order T.D.S. from 
simple cubic single-crystals, neglecting possible ani- 
sotropy and assuming an X-ray detection window of 
infinite height. Schwartz (1964) has pointed out that 
Nilsson's expressions tacitly assume a specific relation 
between the elastic constants, which is not valid for 
many metals; he has proposed a modified expression 
for such situations. Annaka (1962) has extended Nils- 
son's treatment to include not only consideration of 
electronically measured intensities from rotating crys- 
tals (co-scan), but photographic intensity measurements 
as well. However, in order to simplify subsequent cal- 
culations, Annaka, as Nilsson, assumes a simpler 
shape for the detection window than actually exists. 
Cooper & Rouse (1968) have recently improved upon 
Nilsson's calculation by considering an co/20-scan; 
they have also evaluated the errors involved in assum- 
ing an infinitely high detector window. 

These earlier calculations are somewhat restrictive 
in that they are limited to materials crystallizing in the 
cubic system and consider only specific types of inte- 
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grated intensity scans. In this work, a correction for 
the T.D.S. will be developed which (1) is presumed to 
be applicable to all crystalline classes, (2) will consider 
a general, diffractometer integrated intensity scan in the 
vicinity of a reciprocal lattice point, and (3) will employ 
a somewhat simpler and more general expression for 
evaluation of the mean reciprocal square of the lattice 
wave velocity from elastic constant data. Based on 
existing theory, the calculation of both the Bragg 
scattering intensity and the T.D.S. intensity will be 
developed together. 

Theory 

The object of the following analysis is to represent the 
intensity scattered from a small single-crystallite which 
is completely bathed in an incident beam of X-radia- 
tion. It is assumed that: the kinematical theory of X- 
ray scattering is applicable; the adiabatic (or Born- 
Oppenheimer) approximation is valid; the quasi- 
harmonic approximation can be employed. Further, in 
relating the results of this calculation to that which is 
actually measured in the laboratory (the integrated 
intensity) it is assumed that the intensity contributions 
from each of the constituent mosaic blocks in the real 
crystal (which is believed to be composed of many crys- 
tallites) will sum in the same manner for the Bragg 
scattering and the T.D.S. This last assumption merely 
presumes that the ratio of the integrated T.D.S. to the 
integrated Bragg scattering will be the same for each 
mosaic block in the real crystal. 

There are a number of excellent developments of 
the general theory of the scattering of X-rays from a 
crystalline lattice, cfi Born (1943), James (1962), Mara- 
dudin, Montroll & Weiss (1963), and Nicklow & 
Young (1964). The notation of James (1962) will be 
employed in this discussion. Restricting this develop- 
ment to Bravais lattices, the intensity scattered from a 
crystalline lattice can be expressed as follows: 

co 
</(S/2) > = ClfolZe-ZM[Io(S/2) + ~r ITDS-n] (1) 

n=l  

where C includes a number of constant terms including 
the Thomson expression for a radiating electron, the 
polarization factor, and the intensity of the incident 
X-ray beam;J~ is the atomic scattering factor; S is the 
diffraction vector; h is the wavelength of the X-radia- 
tion. The exponential term in equation (1) is common- 
ly referred to as the Debye-WaUer factor and repre- 
sents the primary thermal influence on the scattered 
radiation. I0(S/h) is the Laue interference function and 
represents the Bragg scattering; the nth term in the 
series, ITDS-n, is the nth order T.D.S. contribution to the 
scattered intensity. More specifically, ITDS-n represents 
an interaction between an X-ray photon and n lattice 
wave phonons. Clearly the probability of the occur- 
rence of multi-phonon collisions is significantly less 
than that associated with the first or second order 
T.D.S. ; in the following calculation, only the first order 
contribution will be considered. 

The first order T.D.S. can be expressed in terms of 
the crystalline lattice waves in a Bravais lattice as fol- 
lows" 

~j= j 

x < E (~) >/v (k)2" {lo(S/h+g)+lo(S/h-g)}] (2) 
J 

where 
k = 2 ~ g  (3) 

N is the number of atoms in the lattice; in is the atomic 

k )  polarization vector associated mass; ~ j is the unit 

with the normal mode of polarization index j and of 

wavevectork;  < E ( k )  j > is the mean energy associated 

with that particular wave component and is given by 
the following expression: 

k )  frequency with the same where v j is the associated 

wave component; T is the absolute temperature; h 
and k are Planck's and Boltzmann's constants respec- 
tively. The function I0(S/2 + g) in equation (2) is similar 
to the standard Laue interference function. However, 
instead of peaking at a reciprocal lattice point, it has a 
very sharp maximum at the vector distance + g from 
the reciprocal lattice point. Following the example of 
Maradudin et al. (1963), the Laue interference function 
is replaced by a delta function: 

I0(X) = NzA(X) (5) 

where A(X) is zero unless X terminates on a reciprocal 
lattice point, in which case it is unity. Thus, equation 
(2) takes the form: 

ITDS-1 = ~-~ X L" • ¢~ 
k j = l  -'~ j I 

x <E (k ' .  +A(S/h-g)}] 

Consider the first order T.D.S. at a point in reciprocal 
space defined by the vector S/2, this point being in the 
vicinity of some reciprocal lattice point. Realizing that 
the information regarding the wave vectors of the nor- 
mal vibration modes is completely contained within a 
Brillouin zone, the summation over k need only be 
performed over the Brillouin zone surrounding the 
reciprocal lattice point in question. When this summa- 
tion is carried out, there will be one, and only one, 
wave vector which will yield a non-vanishing contribu- 
tion from the first term in equation (6). Call this g', 
that is, S/2 + g' will terminate on the reciprocal lattice 
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point in question. Similarly, the only non-vanishing 
contribution from the second term will come from 
- g ' .  Therefore, summation over all lattice waves, for 
a particular diffraction vector, gives: 

ITDS-I(S/2) = --N Z" • 
r~]=! 

k 
/ 

Resubstitution into equation (1) then yields the 
following expression for the energy scattered per unit 
area per unit time at a point defined by the vector S/2 
(to first order in the T.D.S.): 

< I(S/2) > = Clfo lee -2M [I0(S/2) 

+ - -  27 • ~ < E > v (8) 
m j=l 2- j j j 

where it is required that the wave vector, [ ,  has the 
property that S/2 + g terminates on a reciprocal lattice 
point [k is related to g in equation (3)]. 

Integrated intensity 
The quantity which is usually measured is the total 

energy, or integrated intensity; that is, in measuring 
Bragg reflections, it is standard procedure to move the 
diffracting crystal and/or the X-ray detection aperture 
through some small region surrounding the Bragg 
peak under investigation. This experimental integra- 
tion of the intensity corresponds to integrating the 
function < I(S/2)> over the equivalent region in re- 
ciprocal space. 

The integration of the first term in equation (8) is 
fairly straightforward. Since the Laue interference 
function is very sharply peaked at the reciprocal lattice 
point, the result is independent of the shape and size 
of the region over which the integration is carried out, 
so long as it is large enough adequately to cover the 
Bragg peak itself. 

c ! 

o 
Fig. 1. Generalized intensity scan in reciprocal space. 

In carrying out the integration of equation (8), a 
completely general diffractometer intensity scan will be 
considered, i.e. it is assumed that the intensity is 
measured as the crystal rotates about the o9 axis 
through the angle 09 and as the detector aperature 
simultaneously rotates about the same axis through 
the angle e. This situation in reciprocal space is depicted 
schematically in Fig. 1. The origin of the reciprocal 
lattice is located at point O; the circular lines running 
through point O represent portions of the intersection 
of the Ewald sphere of reflection of radius 1/2, and the 
diffraction plane. As the intensity is scanned in the 
manner described above, the diffraction vector, S/2, 
moves from the point W to the point W'. This general 
intensity scan can be reduced to either of the two 
standard intensity integration procedures: An 09 scan, 
in which only the crystal rotates, corresponds to e = 0 
and an o9/20 scan, in which the crystal and detector 
rotate in a 1:2 ratio, arises when e = o9. 

An orthogonal, right-handed coordinate system is 
established at W by the quantities (H,X,F);  the cor- 
responding directions are defined by the three unit vec- 
tors: ~n, 8x, and ~.r. The positive ~.r direction lies in the 
diffraction plane, is orthogonal to the Ewald sphere at 
the point W, and is directed outward from the Ewald 
sphere. The other two directions are tangential to the 
Ewald sphere at W; ~n lies in the diffraction plane 
directed away from the origin and 8x is formed from 
the cross-product: ~r x ~/ .  The two directions ~n and 
~x correspond to the detector window width and height, 
respectively. If the point W represents the reciprocal 
lattice point associated with the Bragg peak under in- 
vestigation, then as the integrated intensity is meas- 
ured, a volume element, centered at W, will be swept 
out; the projection of this volume onto the diffraction 
plane is shown cross-hatched in Fig. 1. Considering half 
of the intensity scan first, i.e. the situation as the dif- 
fraction vector changes from S/2 to S'/2, the limits on 
the intensity scan can be written as follows: 

1 
H1 = -- -~- tan (Arl/2) + F cot fl; 

1 
H2 = -I- -~ tan (At//2) + F cot fl 

1 1 (9) 
X1 = - ~- tan  (AX/2); X2= + ~- tan  (Ax/2) 

F a = 0 ;  F2= ~ A~ sin fl 

where At/ and AZ are the angular width and height, 
respectively, of the detection window. ~/2 refers to the 

quantity I - ~ - S  [ ; from the geometry of Fig. l, ~ can 

be expressed in terms of o) and e by the following: 

= 2[sin z (0 + e) + sin 2 0 -  2 sin (0 + e) 

x s i n 0 c o s ( o g - e ) ]  1/2. (10) 

Also, the angle between ~ and ~n (fl) can be written as 
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follows : 

n { 4  ( _ _ ~ ) }  
fl = ~- + 0 -  arc cos ~- sin 0 sin (11) 

If the angular displacements, co and e, are reasonably 
small in comparison with unity, then these expressions 
can be reduced to a somewhat simpler form, viz: 

_ 2[e 2 + (602 -- 2coe) sin 2 0] 1/2 (I0') 

2-n { 2 - s ) s i n 0 }  (11') r _  + 0 - a r c  cos ~(co  

Further, if the detector windows angular dimensions 
are sufficiently small, then the tangent functions in 
equation (9) can be replaced by the angles themselves. 

Let us first consider the integrated Bragg intensity. 
For a particular position of the X-ray detection 
window, i.e. a particular value of the diffraction vec- 
tor, the Bragg scattering energy measured per unit 
time is given by the following: 

dJBragg dt =Clf°12e-2Ml,tlxR2I°(S/2)drldz (12) 

where R is the distance between the crystal and the 
detection window, i.e. the radius of the diffractometer 
(it is presumed that the detection window is normal to 
the scattered beam and that R is large compared to the 
size of the crystallite). The total measured Bragg energy 
is then determined by integrating equation (12) over 
the time interval involved: 

JBragg=CR2l fol2e-ZM I,~ fx lt lo(S/2)drldxdt 

=CR2l fol2e_ZM f,T lx I¢ io(S/2)drldx d__~ (13) 

where the time rate of change of ~, ~, is assumed to be 
constant, i.e. the rotations described by co and/or e are 
presumed to be constant in time. 

The variables of the integration can be expressed in 
the previously defined coordinate system as follows: 

17= 2 ( H -  r cot r )  ] 
x=2X 

= 2F csc fl 
(14) 

and the Jacobian of the coordinate transformation is 
merely 23 cscfl. Thus, the transformed integral be- 
comes: 

C R  2 
JBragg = IfolZe-2M23 CSC fl 

X IH IX IF I ° ( 8 / / ~ ) d H d X d F  (15) 

and, since it has been assumed that the co and/or e 
scan widths will be small, it follows that fl will be ap- 
proximately constant. For a pure co-scan, e=0,  ~ re- 

n 
duces to 2 ~b sin 0, and fl becomes ~- + 0, thus equation 

(15) reduces to the following: 

C R  2 23 
JBragg . . . . .  I fol2e -2M . . . . . .  

oJ sin (20) 

(16) 

This is the same expression developed by James (1962; 
equation 2.36) for an co scan. For a standard co/20 
scan, e=co, ~ reduces to 2i cos 0, and/3 becomes 0; 
thus the only change necessary in equation (16) is to 
replace ~b by i. 

As noted previously, so long as the region of inte- 
gration in equation (15) adequately covers the Bragg 
peak, the result of the integration is independent of the 
integration limits. This integration is carried out by 
James (1962) and the results are as follows: 

C R  2 ,~3 N 
JBragg = Ifo[2e -2M - -  (17) 

sin fl r 

where z is the volume of a unit-cell in the lattice. 
In evaluating the integrated T.D.S. a similar 

argument is developed and it is only necessary to re- 
place the Laue interference function in equation (15) 
with ITDS-I(S/2), as given in equation (7)" 

JTDS-1 m~ [f°12e-2M sin fl H X P j=l  

S k k / v  k 

It will be convenient to work with the ratio of the 
integrated T.D.S. to the integrated Bragg scattering; 
using the notation introduced by Nilsson (1957), let 
this ratio be represented by cc 

JT____Ds-___L_ 1 Z" 
0~-- JBragg Q H X T" j--1 

j)  (j  dHdXdF (19) 

where m has been replaced by the material density, Q. 
z 

Clearly, correction of the measured integrated inten- 
sity for T.D.S. is achieved by dividing the measured 
intensity by the correction factor (1 +a).  

The vector g can be described in the previously de- 
fined orthogonal coordinate system as follows" 

g = H~.H + X~.x + 1-'~.r (20) 
In principle at least, the integral in equation (19) can 
now be evaluated. For each point within the region of 
integration (defined by the parameters H, X, and F), 
there exists a lattice wave vector; upon evaluation of 
the three eigenfrequencies and eigenvectors associated 
with this wave vector, the integrand of equation (19) 
can be evaluated. Repeating this procedure for a large 
number of points in the integration region will suffice 
to evaluate the integral. In practice however, this is not 
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feasible since specific knowledge of the relation be- 
tween the wave vectors and their eigenfrequencies and 
eigenvalues is required. Although this information can 
be obtained from inelastic neutron scattering data or 
lattice dynamical force models, it is generally not 
available.* 

The region in reciprocal space, over which the T.D.S. 
must be evaluated, is centered at a reciprocal lattice 
point and is small in comparison to the size of the 
Brillouin zone. Typical integrated intensity measure- 
ments considered for a variety of materials involved 
reciprocal volumes which were less than 1% of the 
size of the Brillouin zone. Only the long lattice waves 
(low frequency modes) are considered in the immediate 
vicinity of a reciprocal lattice point and it is this fact 
which allows introduction of two approximations: 
firstly, it is assumed that the continuum approximation 
can be made, i.e. that the lattice wave velocities are 
independent of frequency. Indeed, in the long wave- 
length limit, there is no dispersion and this condition 
is fulfilled exactly. Utilizing this approximation in 
equation (19) and substituting the average energy ex- 
pression from equation (4) yields the following equa- 
tion: 

h 3 ~. k ) } 2  

\ 11 ] g 
x coth ..... | [ g [ ~ l d H d X d F ]  (21) 

/ J l  ] 

g) is the velocity associated with the normal where v j 

mode of polarization indexj and of wave vector k. The 
fact that only the low frequency lattice waves are 
being considered can also be used to justify a second 
approximation, viz that hv ~ k T  and hence the average 
energy of a normal mode involved in this calculation is 
kT. Of course, this condition will be fulfilled for all 
normal modes in the high temperature region, i.e. when 
the crystal temperature is in excess of its Debye tempera- 
ture. This approximation allows the expression for c~ to 
be written in the following form: 

0 

2td d d  J 
Strictly speaking, it is equation (22) which must be 

evaluated for accurate calculation of the T.D.S. con- 
tribution to the measured intensities. However, by 
making two additional approximations, equation (22) 
can be reduced to a relatively simple form. The first 
assumption stems from the fact that, within the con- 

* Calculations of the T.D.S. are presently underway for 
zinc, using a modified axially symmetric force model. 

tinuum approximation, the term in the summation in 
equation (22) is independent of the magnitude of the 
wave vector, i.e. the wave velocities and their asso- 
ciated polarization vectors will vary only with direc- 
tion. Therefore, if it is assumed that all directions of 
propagation are considered with equal probability for 
each value of ]gl, then the summation in equation (22) 
can be averaged over all directions independently. The 
weighted mean reciprocal square velocity, < v-2(~s)>, 
is defined as follows: 

a  ra o owr 
all directions 

where ~s is a unit vector parallel to S. Indeed, it is only 
when the reciprocal volume, over which the integra- 
tion is carried out, is spherical in shape that this condi- 
tion is fulfilled exactly and it is for the larger values of 
[g], in the extremes of the integration region, that all 
propagation directions are not considered. Therefore, 
the error induced by using <v-2(~s)> is reduced by 
the multiplicative factor [g[-2; the size of this error is 
discussed below. 

In the general anisotropic situation, <v-2(~s)> 
must be evaluated numerically employing the Chris- 
toffel equations. However, if it is further assumed that 

( g )  occur with equal probability, as all values of ~ j 

would be the case for the aforementioned spherical 
volume in a cubic lattice, then the numerator of equa- 
tion (23) can be averaged separately, yielding a factor 
of ½. The remaining portion of equation (23), the 
averages over all directions of the velocity functions, 
can easily be calculated from elastic constant data. 
Anderson (1963) has shown that use of an averaging 
technique, which is a composite of approximations of 
several authors (Voight, Reuss, Hill and Gilvarry), for 
the reciprocal cubic averaged velocity leads to results 
which, for all symmetry classes, are usually accurate to 
within experimental limits of error in the elastic con- 
stant data employed. Extending Anderson's averaging 
scheme to this situation, an approximate value for the 
weighted mean reciprocal square velocity can be ex- 
pressed as follows: 

< v-/(~.s) > ~½{2 < v t > - 2 +  <vz> -1} (24) 

where < vt > and < v~ > denote the average transverse 
and longitudinal velocities respectively. Anderson has 
related these two average velocities by simple algebraic 
expressions to the elastic constants for all symmetry 
classes.* These expressions are as follows: 

(vt)=VGz-iIQ and (vt)=l/(Knq-4Gnl3)/Q (25) 

* We might point out that there appears to be a misprint 
in the sign of the s13-term for the general expression of the 
minimum shear modulus by the Reuss approximation in 
Anderson's paper; we believe the sign should be positive. 
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where: 

O H  = {!0[½(C11 2/_ G22 -It- C33) -- ½(C12 2r- C23 -t- C31 ) 

"1- (C44 + CS5 -~- C66)] + ~[4(sn + $22 -+- $33) 
--4(812+$23-}-S13)+3($44+$55+$66)] -1 } (26) 

and 

K H  = {@'ff[(Cll "~- C22 -{- C33) -Jr- 2(C12 Jr- C23 -+- C13)] "}- 
Jr- ½[(S11 -~" $22 "~- $33) -t-- 2(S 12 -t- S23 -i t- S 13)]- 1 } (27) 

and c~ and s~j are the elastic stiffnesses and compli- 
ances, respectively. It is curious to note that the results 
obtained using equation (24) for a number of cubic 
materials varied by less than 2% from the results cal- 
culated using the average velocity expressions of 
Zachariasen (1945; equation 4.195) or, equivalently, of 
Nilsson (1957, p. 250). 

The T.D.S./Bragg scattering ratio can now be written 
in the following form: 

4kT ( ~ ) 2  
~pp,ox.= <v-~(~s)> 

d/ dXdr (28) 

where the fact that lSl is equivalent to 2 sin 0 has been 
employed. 

In order to assay the size of the errors generated by 
both the high temperature approximation and the 
introduction of the weighted mean reciprocal square 
velocity, a typical integrated intensity measurement 
was considered for the 511 reflection of Cu. At 290 °K 
the value of C~approx. was calculated from equation (29) 
and (34), using equations (24) through (27) to evaluate 
(v-2(~s)); this value for ~approx. was 0.0399. For the 
same situation, summing over a grid of 68,920 points 
superimposed over the reciprocal volume, ct was com- 
puted from equation (21) to be 0.038195 and from 
equation (22) to be 0.038180. For this particular case 
then, the high temperature approximation caused an 
error of less than 0.04% and introduction of the 
weighted mean reciprocal square velocity expression 
resulted in an error of less than 5%. Indeed, these 
errors are quite modest in consideration of the labour 
saved in using 0Capprox.. 

Evaluation of  the integral 
The integrand in equation (28) is symmetric in Z and 

therefore only the upper half of the detection window 
need be integrated over, i.e. it is only necessary to con- 

<Z < 2 )(.. • Furthermore, recalling that the sider 0 inte- 

gration is being split into two parts, namely that corre- 
sponding to the region between W and W" and that 
corresponding to the region between W and W' in Fig. 
1, the T.D.S./Bragg scattering ratio can be expressed as 
follows: 

_ 8kT 2 
~approx. 02 3 (V--2(eS)) X 0" 5 (29) 

j----1 

+ ~ +~,cotBt AX 

a~=sin2 0 f I z I ~¢jSapj 
rf = - . ~ - -  + ycot Bi x=O 7=0 

[(~t') 2 

+Z2+ 72]-adr/'dxd?, (30) 

where ~rl refers to the integration from the peak in one 
direction and a2 refers to the corresponding integra- 
tion in the opposite direction; the reciprocal lengths, 
H, X, and F, have been replaced by their angular 
equivalents, r/', Z, and 7. From equations (10) and (11) 
it follows that: 

A~j -- 2[sin 2 (0 + Aej) + sin 2 0 -  2 sin (0 + AO) 
x sin 0 cos (Acoj-Aei)] 1/2 (31) 

and 

flj = ~- + 0 -  arc cos ~ sin 0 sin - . (32) 

Ael and Acol are the total angular displacements as 
measured from the peak position in one direction and 
Ae2 and Aco2 are the corresponding limits as measured 
from the peak position in the opposite direction. 
Clearly, for an angularly symmetric scan, A~I = A~2 and 
fll =P2. It is to be noted that crj is independent of both 
the diffracting material and the temperature; it de- 
pends only on the experimental constants of the inten- 
sity measurement, i.e. cr~ = crj(O, All, AZ, Aej, Acoj). 

In general, the integral in equation (30) cannot be 
completely evaluated analytically. In considering the 
equivalent situation for simple cubic materials in the 
case of a pure co-scan, Nilsson (1957) performed the 
integration analytically by assuming that the height of 
the detection window was infinite. More recently, 
Cooper & Rouse (1968) have reduced the triple inte- 
gration to a double integral and performed the two 
final integrations numerically. They have also con- 
sidered the error involved in approximating to a 
sphere, the region over which the integration is to be 
carried out; this approximation also allows analytical 
evaluation of the T.D.S./Bragg scattering ratio. 

In this work, the triple integration indicated in 
equation (30) will be reduced analytically to a pair of 
one dimensional integrations which are to be eval- 
uated, for the general case, numerically. In order to 
reduce the integral, use is made of Gauss's integration 
theorem, where the argument is taken to be the 
following: 

f = g / ( g ,  g)=(r/ '~./~+Z~x+ 7~.r)/(q'2+Z2+ 72). (33) 

This allows as to be written in the following form: 

cr 5 = sin z 0 {F(D, 7 cot/Y5 + C, 7) 
~,=0 

- F(D, 7 cot f l s -  C, 7) + a(C, ? cot fis + C,D, 7) 

l ° +G(C, T cot f l j -C ,D,7)}dT+ {F(A~,B~ 
X----0 

+ C , X ) -  F(Ai, B s -  C,z)}dzI (34) 
i 
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where 

F(x,y,z)-x/xl/x~+ z 2 tan-1 (y/V~2 + z 2) 

G(w,x,y,z)-w/Vxi--+ Z 2 tan -1 (y/[ /~ + Z 2) 

A~ = A ~  sin/3j 
/ h =  zl~j c o s / h  
C=Ar I 
D=Ax 

(35) 

(36) 

(37) 

and, as previously noted, the remaining integration 
must be performed numerically. Two versions of a 
computer program to carry out this integration have 
been run on a C.D.C.-3800 computer; one is written 
in the Algol-60 language and the other is written in 
Fortran. 

To compensate for background contributions to the 
measured intensity, the background intensity is often 
evaluated far from the Bragg peak under investiga- 
tion and extrapolated under the peak (cf. Renninger, 
1952; Young, 1961). Similarly to take account of the 
background in these expressions, the value of ), in the 
denominator of equation (30) is held constant at A~j 
sin flj and the integrations over r/', Z, and ? are carried 
out; this results in the following expression: 

f ( a J ) b k g n d  = sin 2 0 {F(Aj, Bj + C,Z) 
=0 

-F(Aj, Bj-C,z)}dx (38) 

Thus, to compensate for a constant background 
correction to the measured intensity, one need merely 
delete the last term in equation (34), i.e. the integration 
over Z- 

It can be shown that: 

F(a,b, x)dx = ~za x.=o ~ log + V(b//ajT+ 1 . (39) 

Therefore, if  the height of the detection window is 
allowed to increase without bound, i.e. if A;¢--~oo, then 
the value of aj, and hence of the T.D.S./Bragg scat- 
tering ratio, can be completely determined analyti- 
cally; the resulting expression is: 

is parallel to ~.r; as seen in Fig. 1, this gives rise to a 
value of n/2 for/? and occurs when e and co fulfill the 
following relation: 

e 2 + (tan 2 0 -  sin 2 0) (2coe- co2) = 0 .  (41) 

In this case, the limits on the integration over r/ are 
not variables of the integration. The second condition 
which must be fulfilled is that the detection window 
be circular rather than rectangular in shape. Under 
these conditions, equation (25) takes on the following 
form: 

4kT - < v-2(~s) > sin 2 0 O~approx. ~023 

x ~2{f2'~ I z~' I z', ~dg'_d.~ody[ (42) 
i=1 V=0 ~=0.)r,=0 ~ 2 + y 2  J ' 

where A~, is the angular radius of the detection win- 
dow; integration of equation (42) yields the following 
expression: 

8z~k T 
~approx. 023 < V -2 ( ~ )  > sin 2 0 

x ~r A~uarctan 
j = l  \ , d ~ /  

+ A ~ l o g  { l/(A~u)Z+(A¢))z[] (43) 
. . . . . . .  ~ j  . . . . . . . . .  j l  • 

It will be shown in the following section that, for low 
order reflections (0~<40°), the T.D.S. contribution to 
the measured intensity does not vary significantly with 
the type of intensity scan. Thus, for such cases, equa- 
tion (43) can provide a relatively quick estimate of the 
size of the T.D.S. contribution involved. 

Discussion 

Comparison with other calculations and experimental 
results. 

The results of the calculations in this work are com- 
pared with the calculations of Nilsson (1957) and the 
measurements of Renninger (1966) for NaC1 in Table 1; 
in all cases, the background correction has been applied. 

[  eJ+c+¢(BJ+c) +Ai l 
(at)mr.= ~-sin20 Aj log t B ~ - C + I / ( - / ~ - C - ~ - } - J  

+ C sin/~j (logt)/C-Z+(2Cc°tfl~)AIS/ft-~C((lq_cos~CSCTfl'+A'csc fl~ + C cos . . . . . . . . . .  fl~} 

C ( 1 - c o s  ~j) 
(40) 

There is one type of integrated intensity measure- 
ment for which the T.D.S./Bragg scattering ratio can 
be completely evaluated analytically without recourse 
to additional simplifying approximations. Consider 

S' S }  
an intensity scan for which the wave vector 2 2 

When the infinite slit height approximation is made 
[equation (40)], the results of this work are in excellent 
agreement with Nilsson's calculations for both NaC1 
and KC1. As this agreement implies, the evaluation 
of the mean reciprocal square velocity, (1)-2(~.8)), as  

determined in this work, is essentially equivalent to 
the technique employed by Nilsson for NaCI and KC1. 

A C 25A - 4 



application of  either Nilsson's  formulae or the expres- 
sions of this work to either NaC1 or Si is an approxi- 
mation,  i.e. strictly speaking, both calculations were 

It is to be noted that  equat ion (24) is generally applic- 
able under  the aforement ioned approximations.  How- 
ever, as Schwartz (1964) has pointed out, the approx- 
imate  formula  given by Nilsson cannot be applied for 
m a n y  materials.  More specifically, when:  

- ( c 1 1 - c x 2 -  2c44) (cn + cla)c44 > 0 
and 

- ( C l l  Jr" c12)c44 < ( e l l -  c12- 2c44) (ell -[- 2c12- c44) 

there is a singularity in the expression for the mean  
velocity which must  properly be accounted for in 
subsequent integrat ions;  for such cases, an integration 
technique such as that  proposed by Schwartz must  be 
used.* 

Table 1. Comparison o f  calculated values o f  ~ with 
Nilsson's (1957) calculations and Renninger's (1966) 

measurements f o r  NaC1 

This work This work 
h k l Nilsson AX=oo AZ=5 ° Experiment 

2 2 2 0.015 0.0157 0-0156 
4 0 0 0.024 0.0239 0.0237 
6 0 0 0.077 0.0766 0.0751 
6 2 2 0.103 0.1014 0.0991 
4 4 4 0.117 0.1144 0.1106 
8 0 0 0.171 0.1692 0.1641 
6 4 4 0.183 0.1835 0.1777 
8 2 0 0 " 1 8 3 "  0"1835 0"1777 0"20± 10% 
8 2 2 0"197 0"1980 0"1915 

10 0 0 0"302 0"3019 0"2895 
10 2 0 0"320* 0"3169 0"3036 0"31±20% 
6 6 6 0"337 0"3318 0"3176 

Experimental conditions: A//=5°; Acol =Aco2= 1.5°; 
Ael=Ae2=O°; 4=0.71 /k; 
T= 290 °K 

* Value reported by Renninger (1966). 

The values given in column 3 of Table 1 represent 
the T.D.S./Bragg scattering ratio presuming that  the 
detection window is square, i.e. the true height of  the 
X-ray detection window was given neither by Nilsson 
(1957) nor  Renninger  (1952, 1966). Thus the difference 
between columns 2 and 3 in Table 1 would represent 
the error involved in making  the infinite window height 
approximation,  if  the detection window had had an 
angular  height  of  5 o. 

The recent experimental  results of  Renninger  (1966) 
for NaC1 are given in column 4 of Table 1 ; Renninger 's  
data for the 822 reflection of Si give a value of  
0.056 + 20% for c~. This result for Si is to be compared 
with 0.0473 as calculated f rom equations (29) and (34). 
Al though the data are limited, they do appear to con- 
firm the theory. It should be noted however, that  

* Note added in proof: - Walker & Chipman (1969) have 
very recently examined the general applicability of Nilsson's 
expression for the mean reciprocal square velocity and have 
discussed an error which was apparently made in Schwartz's 
calculations. 
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e (DEGREES) 

Fig. 2. Plot of era versus diffraction angle, 0, for four different 
experimental situations. [Ar/=AX=5.0°; Aej=0.0°; Aco~= 
1"5°]. Curve A: Total intensity measurement; infinite slit 
height. Curve B- Total intensity measurement; square 
detection window. Curve C: Constant background correc- 
tion; infinite slit height. Curve D: Constant background 
correction; square detection window. 
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10 20 30 40 50 60 70 80 90 

e (DEGREES) 

Fig.3. Plot of o'j versus diffraction angle, 0, for increasing 
co/20-scan widths. [Ar/=Az=I.5°]. Curve A: Aej=Aco~= 
2.0 °. Curve B: Aej=Aco~= 1"5 °. Curve C: Aej=Acoj=l.O ° 
Curve D: Ae~=Acoj=0-5 °. 
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developed for monatomic lattices. It is also possible 
that the slight discrepancy seen for the 820 reflection 
of NaC1 might be due to higher order T.D.S. effects 
which are not considered in either this calculation or 
Nilsson's. 

Annaka (1962) has also derived an expression to 
evaluate the T.D.S./Bragg scattering ratio for an 
o~ scan. In essence, he has made some approximations 

o/ 0 "06  

0"05 - 

0"04 - 

0 '03 

0"02 

0'01 

0 '00  
0 10 20 30 40 50 60 70 80 90 

O(DEGREES) 
Fig.4. Plot of aj versus diffraction angle, 0, for increasing 

detection window widths. [Az=I'5°; zlcj=zlcoj=l'25°]. 
Curve A: /It/=2"0 °. Curve B: zlr/=l'0 °. Curve C: At/= 
0.5 ° 

9' 0"06 
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0"03 

0 " 0 2  

0'01 

o =60 ° 

0 = 2 0  ° 

0"000 10 20 30 40 50 60 70 90 100 

PERCENTW2 SCAN 

Fig. 5. Plot of aj versus type of intensity scan for four diffrac- 
tion angles, far/= AZ = 1-5 °]. 

concerning the region in reciprocal space over which 
the integration indicated in equation (28) is to be car- 
ried out and, in so doing, he has reduced the basic 
expressions for the T.D.S./Bragg scattering ratio to a 
tenable form. Annaka has reported values for the 
T. D. S./Bragg scattering ratio for NaCI, c~-Fe, and an- 
thracene. An evaluation of what we believe to be the same 
situation for NaC1 and e-Fe, using the expressions 
of this work [equations (29) and (34)], yielded results 
which were about 50% lower than those reported by 
Annaka (1962). However, Annaka (1968) has recently 
recomputed the T.D.S./Bragg scattering ratio for NaCI 
and c~-Fe; our agreement with these calculations is 
quite good. The differences between Annaka's (1968) 
results and the results of this work are of the order of 
a few per cent and are probably due to the different 
methods of evaluating the integral over the reciprocal 
volume 'seen' during the intensity scan. 

Examination o f  the variation o f  the T.D.S./Bragg scat- 
tering ratio. 

As previously noted, the T.D.S./Bragg scattering 
ratio can be described through the dimensionless 
quantity al. In Fig. 2 the variation of al with diffraction 
angle, 0, has been plotted for four different situations. 
The two upper curves represent the total measured 
T.D.S./Bragg scattering ratio for an infinitely high 
detector window (curve A) and for a square detection 
window (curve B). The cross-hatched region between 
curves A and B represents the error introduced in 
making the infinite slit height approximation for this 
particular situation; this amounts to a 30% error at 
the maximum. In curves C and D of Fig.2, similar 
plots are shown, however these results have been cor- 
rected for a constant background contribution. Again, 
the cross-hatched region represents the error involved 
in making the infinite window height approximation 
for this situation. At the peak, this corresponds to an 
error which is less than 6%. Indeed, as stated by 
Nilsson (1957, p. 255), the inclusion of the background 
correction serves to reduce significantly the error 
involved in assuming the X-ray detection window to 
be infinitely high. 

It is quite obvious from these curves that the effect 
of the T.D.S. on the measured intensity increases to a 
rather pronounced maximum in the intermediate-high 
angle region and drops rapidly to zero as 0 approaches 
0 ° and 90 °. The reason why the T.D.S. contribution 
vanishes at these two extremes is linked to the fact that 
the reciprocal volume 'seen' during the intensity 
measurement tends to vanish in these regions. 

In Fig. 3 the variation of aj with diffraction angle 
has been plotted for four different (o/20 scan widths. 
As expected, the increase in aj realized, as the size of 
the intensity scan is increased, tends to become less 
and less. This is of course due to the fact that the 
T.D.S. is also peaked at the Bragg peak position, thus 
an increased scan width serves to. include more and 
more of a decreasing tail. It is curious to note however, 

A C 2 5 A  - 4* 
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that the peak value of aj does tend to shift slightly to 
a higher 0 value as the scan size is increased. 

The variation of aj with diffraction angle has been 
plotted for three different X-ray detection window 
widths in Fig.4. As in the previous case, the net 
increase in as appears to diminish as the window width 
is increased. This too is due to the fact that the T.D.S. 
itself is peaked at the Bragg diffraction peak and again, 
one is merely 'seeing' more and more of a diminishing 
tail. 

Recognizing that the T.D.S./Bragg scattering ratio 
tends to show a pronounced maximum (at least for 
the situations considered in this work) in the high 
angle region, (60 ° < 0 < 80 °) attempts to measure the 
T.D.S. contribution experimentally would perhaps be 
most fruitful if performed on Bragg reflections lying 
in this region. 

Finally, in Fig. 5, the variation of aj is examined as 
the type of intensity scan is changed from a pure 
co scan (crystal only rotating) to a pure o9/20 scan 
(crystal and counter simultaneously rotating in a 1:2 
ratio) for four different diffraction angles. As evidenced 
by the curves in Fig. 5, for low order reflections (40 °< 
0), the T.D.S./Bragg scattering ratio does not vary 
significantly as the type of intensity scan is changed 
from a pure co scan (fl= ~/2+ 8) to a pure co/20 scan 
(fl= 0). For higher order reflections however (0 > 60 °), 
the effect of changing the type of intensity scan is 
quite pronounced: for 8=80 °, a 73% increase in the 
value of a3" is realized as fl decreases from n/2 + 0 to 0. 
It should be noted, though, that if equation (24) had 
not been used to evaluate (v-Z(~s)), this variation of the 
T.D.S./Bragg scattering ratio with the type of scan 
could be somewhat more pronounced due to possible 
anisotropic effects. 

The curves shown in Fig. 5 tend to suggest that ex- 
periments designed to measure the effect of T.D.S. 
should be performed using an intensity scan which 
represents an admixture of the co scan and the o)/20 
scan, i.e. the crystal and detector should be simultane- 
ously rotated in a ratio which tends to maximize aj. 

Conclusions 

A technique for evaluating the first order T.D.S. con- 
tribution to integrated X-ray intensity measurements 
of Bragg reflections for monatomic crystalline lattices 
has been developed. The calculation has been carried 
out for a general type of diffractometer integrated 
intensity measurement; the special cases where only 
the crystal is rotating (co scan), and where the crystal 
and detector are simultaneously rotating in a 1:2 ratio 
(09/20 scan) are considered. The equations appropriate 
to a constant background correction are given and 
simplified expressions are presented for the special case 
of an infinitely high detection window and for a cir- 
cular detection window moving in reciprocal space in 
a direction perpendicular to the Ewald sphere of reflec- 
tion. It was found, for the typical situations considered, 

that when the infinite slit approximation is applied, 
the error involved can be significantly reduced (from 
as much as 30% to less then 6%) by applying a con- 
stant background correction; this is in agreement with 
Nilsson's (1957) prediction. 

The calculated results for the T.D.S./Bragg scat- 
tering ratio for a typical situation using the final 
expressions of this work, equations (29) and (34), were 
compared with the answers obtained via a rigorous 
numerical integration of the basic expressions. This 
comparison showed that, for the situation considered, 
the errors introduced by the high temperature approx- 
imation and the averaging expression for (v-E(~s)) 
were less than 5%. Furthermore, the results of this 
calculation are in excellent agreement with Nilsson's 
(1957) results for both NaC1 and KCI and in good 
agreement with Annaka's (1968) calculations for NaC1 
and c~-Fe. These facts represent a partial check on the 
more general expressions used in this work. 

Limited experimental confirmation of the results 
of this calculation has been obtained by comparison 
with the measurements of Renninger (1966) on NaC1 
and Si. 

Finally, the effect of the T.D.S. contribution to the 
measured intensity was investigated through a dimen- 
sionless parameter, as, which depends only on the 
experimental constants relating to the intensity meas- 
urements. It was found that Gj vanishes as the diffrac- 
tion angle approaches 0 ° and 90 °; in an intermediate- 
high angle region (60°<8<  80°), as tends to show a 
very pronounced maximum. Increasing the size of 
either the X-ray detection window or the width of the 
intensity scan, both serve to increase a~, but in increas- 
ingly smaller amounts. For low order reflections 
(0<40°), the T.D.S. contribution to the measured 
intensity is relatively insensitive to the type of intensity 
scan, but for higher order reflections (0>60°), this 
contribution shows an increasing variation as the in- 
tensity scan is changed from a pure co scan to a pure 
o)/20 scan. 

The authors would like to express their thanks to 
Dr Joseph L. Feldman, Dr B. T. M. Willis, and Dr 
Forrest L. Carter for their interest in this work. We 
are also grateful to Professor M. Renninger for his as- 
sistance in the evaluation of c~ for Si and to Dr M.J. 
Cooper and Mr K. D. Rouse for providing a preprint 
of their paper on T.D.S. 

References 

ANDERSON, O. L. (1963). J. Phys. Chem. Solids, 24, 909. 
ANNAKA, S. (1962). J. Phys. Soc. Japan, 17, 846; (1968) 

Private communication. 
BORN, M. (1943). Rep. Prog. Phys. 9, 294. 
CI~PMAN & PASKIN. (1959). 3". Appl. Phys. 30, 1992. 
COOPER, D. M. & ROUSE, K. D. (1968). Acta Cryst. A24, 

405. 
JAMES, R. W. (1962). The Optical Principles of the Diffrac- 

tion of X-Rays. London: Bell. 



E A R L  F. S K E L T O N  AND J. L A W R E N C E  KATZ 329 

MARADUDIN, A. A., MONTROLL, E. W. & WEISS, G. H. 
(1963). Solid State Physics, Suppl. 3, edited by SEITZ and 
TURNBULL, p. 231. New York: Academic Press. 

NICKLOW, R. M. & YOUNG, R. A. (1964). Tech. Rept. No. 
3, ONR Contract No. NOnr 991(00) and 991(06); NR- 
017-623, with Georgia Institute of Technology. 

NILSSON, N. (1957). Ark. Fys. 12, 247. 
RENNINGER, M. (1952). Acta Cryst. 5, 711. 
RENNINGER, M. (1966). Advanc. X-Ray Anal. 10, 42. 
SCHWARTZ, C. H. (1964). Acta Cryst. 17, 1614. 

WALKER, C. B. & CHIPMAN, D. R. (1969). Acta Cryst. 
A 25, in the press. 

WALLER, I. (1925). Uppsala Dissertation, pp. 1-58. 
WALLER, I. (1928). Z. Phys. 51,213. 
WARREN, B. E. (1953). Acta Cryst. 6, 803. 
YOUNG, R. A. (1961). Tech. Rept. No. 2, ONR Contract 

No. NOnr 991(00) and 991(06); NR-017-623, with Geor- 
gia Institute of Technology. 

ZACHARIASEN, W. H. (1945). Theory of X-Ray Diffraction 
in Crystals. New York: John Wiley. 

Acta Cryst. (1969). A25, 329 

Magnetic Symmetry Groups 

BY T. S. G. KRISHNAMURTY AND P. GOPALAKRISHNAMURTY 

Andhra University, Waltair, S. India 

(Received 20 April 1968 and in revised form 17 September 1968) 

It is shown that the real one-dimensional irreducible representations of a crystallographic point group 
induce the magnetic symmetry groups associated with the point group and also give the number of 
independent non-vanishing constants required to describe any magnetic property for the induced mag- 
netic symmetry groups. 

1. Introduction 

The crystallographic point groups describe the spatial 
symmetry operations like rotations and rotation-re- 
flexions by which a crystal is brought into coincidence 
with itself. By the application of an ordinary symmetry 
operation on an arrangement of atoms in a point 
group, although the geometrical structure may be 
brought into coincidence with itself, it may be that 
the orientations of some or all of the atomic magnetic 
moments (spins) are reversed. In such a case a further 
reversal of the affected spins must follow the usual 
symmetry operation in order to bring the geometrical 
structure, together with the spins, into complete coin- 
cidence with itself. The time reversal operation, N, has 
been introduced in this context to account for the 
reversal of the spins. The need for generalization of 
the concept of symmetry operations was realized long 
ago by Shubnikov (1951), Landau & Lifshitz (1960) 
and several others to explain the magnetic properties 
of crystals. The introduction of the new symmetry 
operation N increases the number of the point groups 
from 32 to 122. These 122 point groups can be clas- 
sified broadly into two categories. They are (i) the 32 
grey groups containing ~/ explicitly and (ii) the 90 
magnetic symmetry groups. The 32 conventional crys- 
tallographic point groups together with the 58 bi- 
coloured magnetic point groups constitute the 90 mag- 
netic symmetry groups. The magnetic symmetry groups 
have been derived in a variety of ways by Shubnikov 
(1951), Tavger & Zaitsev (1956), Hamermesh (1962), 

Tinkham (1964) and Bhagavantam & Pantulu (1964). 
Recently Koptsik (1966) also discussed the magnetic 
symmetry groups in connexion with the description 
of magnetic structures of crystals on the basis of Lan- 
dau's theory of the second order phase transitions. 
In this paper it is proposed to derive the magnetic sym- 
metry groups by a more elegant method, based on the 
representation theory of groups. The method presented 
here emphasizes the significance of the physical con- 
stants occurring in the alternating representations of the 
conventional point groups, and this is explained in 
§4. 

2. Description of the method 

The magnetic symmetry groups have been constructed 
(Hamermesh, 1962) by selecting possible subgroups of 
index 2 from the 32 point groups. A subgroup H of 
index 2 of a group G is necessarily a self-con- 
jugate subgroup of G. Then G can be written as G =  
H+A~H, where At is any element that belongs to 
G - H .  The co-sets H and AiH form the factor group 
G/H. Constructing the set M(a)H of elements asso- 
ciated with the group G defined by the relation 
M(G)H=H+,_~AIH, it can be seen that MtG)H forms a 
group, which is called the magnetic group of G with 
respect to H. Thus in the construction of the magnetic 
groups of G, one has A2H = H so that the characters 
of A~H in the factor group G/H are + 1. Hence the 
representations of A~H in the factor group are real and 
one-dimensional. Given a subgroup H of index 2 of G, 
there corresponds uniquely to it a real one-dimensional 


